Installation ============ Install from PyPI ----------------- .. code-block:: bash pip install image-classification-tools This installs the package and its core dependencies (PyTorch, torchvision, numpy, matplotlib). Requirements ------------ * Python ≥ 3.10 * PyTorch ≥ 2.0.0 * torchvision ≥ 0.15.0 Optional dependencies --------------------- For hyperparameter optimization: .. code-block:: bash pip install optuna Or install with all optional dependencies: .. code-block:: bash pip install image-classification-tools[all] Install from source ------------------- To install the development version: .. code-block:: bash git clone https://github.com/gperdrizet/CIFAR10.git cd CIFAR10 pip install -e . Verify installation ------------------- .. code-block:: python import image_classification_tools from image_classification_tools.pytorch import data, training, evaluation print("Installation successful") GPU support ----------- The package works with both CPU and GPU. To verify CUDA availability: .. code-block:: python import torch print(f'CUDA available: {torch.cuda.is_available()}') if torch.cuda.is_available(): print(f'CUDA version: {torch.version.cuda}') print(f'Device count: {torch.cuda.device_count()}') Next steps ---------- * :doc:`quickstart` - Get started with a quick example * :doc:`api/index` - Browse the API reference * :doc:`api/index` - Browse the API reference