Image Classification Tools
User guide
Installation
Install from PyPI
Requirements
Optional dependencies
Install from source
Verify installation
GPU support
Next steps
Quick start guide
Basic workflow
Example: MNIST classification
1. Load data
2. Define model
3. Train model
4. Evaluate model
5. Visualize results
Working with custom datasets
Convolutional neural networks
Data augmentation
Hyperparameter optimization
Advanced: Building custom CNNs
Next steps
API reference
API reference
Core modules
Data loading
Functions
Overview
Example usage
Training
train_one_epoch()
evaluate()
train_model()
Functions
Overview
Example usage
Evaluation
evaluate_model()
Functions
Overview
Example usage
Plotting
Overview
Example usage
Hyperparameter optimization
Overview
Key components
Example usage
Search space format
Module overview
Complete module index
Project links
GitHub Repository
PyPI Package
Issue Tracker
Image Classification Tools
Overview: module code
All modules for which code is available
image_classification_tools.pytorch.data
image_classification_tools.pytorch.evaluation
image_classification_tools.pytorch.training